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Abstract
Robertson and Hadamard–Robertson theorems on non-negative definite
Hermitian forms are generalized to an arbitrary ordered field. These
results are then applied to the case of formal power series fields, and the
Heisenberg–Robertson, Robertson–Schrödingerand trace uncertainty relations
in deformation quantization are found. Some conditions under which the
uncertainty relations are minimized are also given.

PACS numbers: 03.65.−w, 03.65.Fd

Dedicated to Jerzy Plebański on the occasion of his 75th birthday.

1. Introduction

The Heisenberg uncertainty relation for canonical observables q and p is certainly one of the
most fundamental results in quantum mechanics. It was introduced by Heisenberg in 1927 [1]
and mathematically proved by Kennard [2] and Weyl [3]. Later on the Heisenberg uncertainty
relation was generalized to the case of two arbitrary observables by Robertson [4, 5] and
Schrödinger [6]. In fact in [5, 6] an improved version of the Heisenberg uncertainty relation
has been obtained. Finally, Robertson [7] was able to extend the previous results to an arbitrary
number of observables. The inequalities found in [7] are called the Heisenberg–Robertson
and Robertson–Schrödinger uncertainty relations.

Recently a great deal of interest in uncertainty relations has been observed. It has been
shown that they can be used to define squeezed and coherent states and also to generalize these
important concepts by introducing the notion of intelligent states [8–18].

* We would like to dedicate this modest work to our teacher and friend, Professor Jerzy Plebański, who several years
ago showed us his works on Moyal bracket and the beautiful notes from his Polish lectures entitled ‘Nawiasy Poissona
i Komutatory’ [30]. This was the inspiration of our interest in deformation quantization.
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It seems natural that any theory which would like to describe quantum systems should
reproduce in some sense the uncertainty relations. So we expect that this must also be the case
in deformation quantization.

Deformation quantization as introduced by Bayen, Flato, Fronsdal, Lichnerowicz and
Sternheimer [19] and extensively developed during recent years (for a review see [20, 21]),
besides a well-constructed mathematical formalism is expected to be an alternative approach
to the description of quantum systems. A big effort in this direction has been made,
e.g. [22–28].

The aim of the present paper is to study the uncertainty relations in deformation
quantization. This problem in the case of two observables has already been considered
by Curtright and Zachos [29]. We are going to extend their results to the case of an
arbitrary number of observables (real formal power series) and so to obtain in deformation
quantization the Heisenberg–Robertson and Robertson–Schrödinger uncertainty relations and
also the concept of Robertson–Schrödinger intelligent state.

To deal with uncertainty relations in deformation quantization first one should consider
the theory of formally real ordered fields and then apply it to the field of formal power series.
This is done in sections 2 and 3.

The importance of the theory of formally real ordered fields in deformation quantization
and especially in the Gel’fand–Naimark–Segal (GNS) construction was recognized by
Bordemann and Waldmann [25]. In our paper we use extensively the results of their
distinguished work.

In section 4 the proofs of Robertson and Hadamard–Robertson theorems for an arbitrary
ordered field are given. The results of this section are then used in section 5 to obtain
the Heisenberg–Robertson, Robertson–Schrödinger and trace uncertainty relations. Some
conditions to minimize the Robertson–Schrödinger uncertainty relations and to get intelligent
states are found in section 6. These conditions are the deformation quantization analogues of
those introduced by Trifonov [12].

Finally, some concluding remarks in section 7 close our paper.

2. Formally real fields

In this section we give a brief review of the Artin–Schreier theory of formally real fields. For
a detailed exposition the reader is referred to the books by Jacobson [31], Lang [32], Fuchs
[33], Rajwade [34], Scharlau [35], Prestel and Delzell [36] or to the original paper by Artin
and Schreier [37].

Let K be a field.

Definition 2.1. An ordered field is a pair (K, P ) where P is a subset of K such that

(i) 0 /∈ P,P ∩ −P = ∅;
(ii) P + P ⊂ P,P · P ⊂ P ;

(iii) K = P ∪ {0} ∪ −P .

If (K, P ) is an ordered field then we say that K is ordered by P and P is called an order
of K or the set of positive elements of K. It is easy to show that if P and P ′ are two orders of
K and P ′ ⊂ P then P ′ = P .

Let a �= 0 be any element of K. By (iii) a ∈ P or −a ∈ P . Then by (ii) a2 = (−a)2 ∈ P .
Consequently, if ai ∈ K, i = 1, . . . , n, then a2

1 + · · · + a2
n = 0 iff ai = 0 ∀i. Now, since

1 = 12 ∈ P one has 1 + · · · + 1 �= 0 which means that the characteristic of K is 0.



Uncertainty relations in deformation quantization 10645

One defines the relations > and � by: a > b for a, b ∈ K iff a − b ∈ P ; a � b iff a > b

or a = b. The following properties of the relation > can be easily proved:

a > 0 iff a ∈ P

a > b and b > c ⇒ a > c

a �= b ⇒ a > b or b > a

a > b ⇒ a + c > b + c for any c ∈ K

a > b ⇒ ad > bd for any d ∈ P.

As is used in real number theory we write b � a iff a � b.
Given an ordered field (K, P ) the module | · | can be defined by: |a| = a for

a > 0, |a| = −a for a � 0. One quickly finds that |ab| = |a||b| and |a + b| � |a| + |b|.
Definition 2.2. (K, P ) is called an Archimedean ordered field if for each a ∈ K there exists
an n ∈ N such that 1 + · · · + 1 > a.

An important class of fields called formally real fields was introduced and analysed by
Artin and Schreier in their pioneer work [37].

Definition 2.3. K is said to be a formally real field if −1 is not a sum of squares in K.

The classical example of this type of field is provided by the real number field R. Another
example fundamental for our further constructions will be given in the next section.

The connection between the ordered fields and the formally real fields is given by

Theorem 2.1. K can be ordered iff K is formally real.

Definition 2.4. A field K is called real closed if

(i) K is formally real;
(ii) any formally real algebraic extension of K is equal to K.

For example, the real number field R is real closed.
The following theorems characterize the real closed fields:

Theorem 2.2. If K is real closed, then K has a unique order P = (K − {0})2 := {a2 :
a ∈ K − {0}}.
Theorem 2.3. The following statements are equivalent:

(1) K is real closed.
(2) Any polynomial of odd degree with coefficients in K has a root in K and there exists an

order P of K such that any positive element has square root in K.
(3)

√−1 /∈ K and K(
√−1) is algebraically closed.

(We use the usual notation in which K(X1, . . . , Xn) denotes the field of rational functions
in X1, . . . Xn with coefficients in K. So K(

√−1) = K +
√−1K.)

Now the natural question arises if an arbitrary ordered field can be extended to a real
closed one. To answer this question first we give

Definition 2.5. Let (K, P ) be an ordered field. A field K′ is said to be a real closure of K

relative to P if the following conditions are satisfied:

(i) K′ is an algebraic extension of K;
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(ii) K′ is real closed;
(iii) P = (K′ − {0})2 ∩ K, i.e., the unique order (K′ − {0})2 of K′ is an extension of P.

Perhaps the most important result in the formally real fields theory is the theorem due to
Artin and Schreier [37] on the existence and uniqueness of a real closure for any ordered field.

Theorem 2.4. Any ordered field (K, P ) has a real closure relative to P. If (K1, P1) and (K2, P2)

are ordered fields and K′
1 and K′

2 their respective closures, then any isomorphism f : K1 → K2

such that f (P1) = P2 can be uniquely extended to an isomorphism f ′ : K′
1 → K′

2 with
f ′((K′

1 − {0})2) = (K′
2 − {0})2.

This theorem will be applied in section 4 to prove the generalized Robertson inequality.
Finally, we introduce the notion of an exponential valuation of an arbitrary field K.

Definition 2.6. Let K be a field. An exponential valuation of K is a mapping ν : K → R ∪ {∞}
such that for all a, b ∈ K

(i) ν(a) = ∞ ⇔ a = 0
(ii) ν(ab) = ν(a) + ν(b)

(iii) ν(a + b) � min{ν(a), ν(b)}.
Given an exponential valuation ν : K → R ∪ {∞} one can define a metric on K as

follows:

dν(a, b) := exp{−ν(a − b)} (exp{−∞} := 0). (2.1)

The pair (K, dν) is a metric space, and consequently all notions known in the theory of
metric spaces can be applied in the present case e.g., a topology T ν defined by the metric dν ,
Cauchy sequences, completeness, etc.

Let (K, P ) be an ordered field. Then we have a natural topology T0 on K: a base of T0 is
the set B of ε-balls, where the ε-ball with centre at a ∈ K, Bε(a), is defined by

Bε(a) := {b ∈ K : |b − a| < ε} 0 < ε ∈ K.

If the topology Tν on K defined by the valuation ν : K → R ∪ {∞} is equal to the
topology T0 defined by the order P of K then we say that the valuation ν is compatible with
the ordering of K.

An important example when Tν = T0 is considered in the next section.

3. Fields of formal power series

Formal power series play an important role in mathematical physics. Examples of this are
the formal solution of the evolution Schrödinger equation or the Baker–Campbell–Hausdorff
formula [38]. But maybe the most transparent application of formal power series theory can
be found in deformation quantization as formulated by Bayen et al [19] and developed by
Fedosov [39], Kontsevich [40] and others (see [20, 21]). Here the formal power series with
respect to the deformation parameter h̄ arise as the main objects of the construction.

We give a short exposition of general formal power series field theory. For details see
[25, 26, 31, 33, 36, 41, 42].

Let (G, +) be an additive Abelian group.

Definition 3.1. An ordered Abelian group is a pair ((G, +), S) where S is a subset of G such
that

(i) 0 /∈ S, S ∩ −S = ∅;
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(ii) S + S ⊂ S;
(iii) G = S ∪ {0} ∪ −S.

We use the symbol 0 for the neutral element of the group (G, +) as well as for the zero
element of a field.

If g1, g2 ∈ G then we say that g1 < g2 (g1 is less than g2) iff g1 − g2 ∈ S. So g ∈ S iff
g < 0 and it means that S consists of elements of G less than the neutral element 0. We write
g1 � g2 iff g1 < g2 or g1 = g2.

Definition 3.2. Let ((G, +), S) be an ordered Abelian group and K a field. A formal
power series on G over K is a map a : G → K such that any nonempty subset of the set
supp a := {g ∈ G : a(g) �= 0} has a least element.

The formal power series a : G → K is usually denoted by a = ∑
g∈G agt

g where
ag := a(g). The set of all formal power series on G over K will be denoted by K((tG)). When
(G, +) is the Abelian group of integers (Z, +) we simply write K((t)).

Addition and multiplication of formal power series a = ∑
g∈G agt

g and b = ∑
g∈G bgt

g

are defined as follows:

a + b =
∑
g∈G

(ag + bg)t
g ab =

∑
g∈G


∑

g1∈G

ag1bg−g1


 tg. (3.1)

(Note that according to definition 3.2 both operations are well defined. In particular for
any g ∈ G the number of nonzero elements of the form ag1bg−g1 , g1 ∈ G, is finite.)

As has been shown by Hahn [43] (and then generalized by Neumann [44]) the set K((tG))

together with the addition and multiplication defined by equation (3.1) forms a field.
Recall that (G, +) is called a root group if for any integer n and every g ∈ G there exists

g′ ∈ G such that ng′ = g. We need also the notion of universal field. A field K is said to be
universal if every other field K′ of the same cardinal number and the same characteristic as K

is isomorphic to some subfield of K.
The following two important theorems have been proved by MacLane [45] (see also [41]):

Theorem 3.1. If the coefficient field K is algebraically closed and the ordered Abelian group
G is a root group, then the power series field K((tG)) is algebraically closed.

Theorem 3.2. If the coefficient field K is algebraically closed and the ordered Abelian group
G is a root group and it contains an element different from the neutral element 0, then the
power series field K((tG)) is universal.

Suppose that the coefficient field K is formally real and is ordered by P. Then K((tG)) is
a formally real field and there exists a natural order P ′ of K((tG)) generated by the order P.
This order is defined as follows:

Definition 3.3. If a = ∑
g∈G agt

g, ag ∈ K and g0 is the least element of supp a, then a > 0
iff ag0 > 0.

For the case when the coefficient field K is formally real one can rewrite theorem 3.1 in
the form (see also Alling [46]).

Theorem 3.1′. If the coefficient field K is real closed and the ordered Abelian group G is a
root group, then the power series field K((tG)) is real closed.
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The fundamental object in the usual deformation quantization construction is an
associative algebra (C∞(M)((h̄)), ∗) over the complex field C((h̄)) = R((h̄)) +

√−1R((h̄)).
We discuss this algebra in more detail in section 5. Here we note only that C∞(M)((h̄))

denotes the set of formal power series on the group Z with coefficients being smooth complex
functions on a symplectic manifold M. (As is used in deformation quantization the parameter
t is denoted by h̄.)

However, in the light of theorems 2.3, 3.1, 3.2 and 3.1′ it seems more convenient to
deal with the algebra (C∞(M)((h̄Q)), ∗) over the complex field C((h̄Q)) = R((h̄Q)) +√−1R((h̄Q)) where (Q, +) is the group of rational numbers. This conclusion can also
be justified from the analytical point of view.

To this end define a valuation ν : C((h̄Q)) → R ∪ {∞} (or R((h̄Q)) → R ∪ {∞}) as
follows:

ν(a) = min(supp a) a ∈ C((h̄Q)) (or R((h̄Q))). (3.2)

Then the metric dν : C((h̄Q)) × C((h̄Q)) → R (or R((h̄Q)) × R((h̄Q)) → R) is given
by (2.1).

Analogously with what has been done in [25] (proposition 2) one can prove:

Proposition 3.1. (C((h̄Q)), dν) and (R((h̄Q)), dν) are complete metric spaces.

It is also a simple matter to show that the valuation (3.2) is compatible with the ordering
of R((h̄Q)) given by definition 3.3, i.e. Tν = T0, where the topologies Tν and T0 are defined in
section 2.

Remark. Bordemann and Waldmann [25] deal with some subfields of C((h̄Q)) (or R((h̄Q)))
defined as follows:

(1) The field of formal Newton–Puiseux (NP) series

C〈〈h̄∗〉〉 := {a ∈ C((h̄Q)) : ∃ N ∈ NN · supp a ⊂ Z};
(2) The field of formal completed Newton–Puiseux (CNP) series

C〈〈h̄〉〉 := {a ∈ C((h̄Q)) : supp a ∩ [p, q] is finite for any p, q ∈ Q},
and similarly for R〈〈h̄〉〉 and R〈〈h̄∗〉〉. In proposition 2 of [25] it is shown that (C〈〈h̄〉〉, dν)

and (R〈〈h̄〉〉, dν) are complete metric spaces. Moreover, (C〈〈h̄∗〉〉, dν) (or (R〈〈h̄∗〉〉, dν)) is
dense in (C〈〈h̄〉〉, dν) (or (R〈〈h̄〉〉, dν)). Then in theorem 1 of [25] it is proved that both fields,
C〈〈h̄∗〉〉 and C〈〈h̄〉〉, are algebraically closed (R〈〈h̄∗〉〉 and R〈〈h̄〉〉 are real closed).

It is evident that (C〈〈h̄〉〉, dν) and, consequently, (C〈〈h̄∗〉〉, dν) are not dense metric
spaces in (C((h̄Q)), dν). However, since (C((h̄Q)), dν) is complete and the field C((h̄Q))

is algebraically closed then C((h̄Q)) can be applied to the GNS construction in deformation
quantization analogously as is in the case of C〈〈h̄〉〉 [25, 26].

4. Robertson and Hadamard–Robertson theorems for an arbitrary ordered field

The well-known Heisenberg uncertainty relation between two canonical observables admits
several generalizations. One of them was given by Robertson [5] and Schrödinger [6]. These
results were then generalized to an arbitrary number of observables by Robertson [7]. Recently
a revival of interest in the important Robertson work can be observed ([12–17] and references
given therein).

In this section we are going to generalize Robertson’s results to an arbitrary formal real
ordered field. Let (K, P ) be a formally real ordered field and Kc := K(i) = K + iK, i ≡ √−1,
its complexification.

Let V be a vector space over Kc.
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Definition 4.1. A Hermitian form on V is a map φ : V × V → Kc satisfying the following
properties.

(i) φ(c1v1 + c2v2, w) = c1φ(v1, w) + c2φ(v2, w)

(ii) φ(v, c1w1 + c2w2) = c1φ(v,w1) + c2φ(v,w2)

(iii) φ(v,w) = φ(w, v)

∀v1, v2, w1, w2, v,w ∈ V, ∀c1, c2 ∈ Kc.

In this paper the overbar denotes the complex conjugation.
(Note. A map ψ : V × V → Kc is said to be a sesquilinear form if it satisfies (i) and

(ii) [32].)
Hermitian form φ : V × V → Kc is said to be positive definite if φ(v, v) >

0 for all nonzero v ∈ V ; and it is said to be non-negative definite if φ(v, v) � 0 ∀v ∈ V .
Suppose that dimV = n. Let (e1, . . . , en) be any basis of V and let v = ∑n

j=1 vj ej be
any vector of V . Then from definition 4.1 one gets

φ(v, v) =
n∑

j,k=1

φjkvj vk φjk = φkj (4.1)

where φjk := φ(ej , ek).
We can write φjk = ajk + ibjk, ajk, bjk ∈ K. From (4.1) it follows that ajk = akj and

bjk = −bkj . So the n × n matrix (φjk) over Kc is Hermitian, the matrix (ajk) over K is
symmetric and the matrix (bjk) over K is skew-symmetric.

Now we are in a position to prove a generalization of the Robertson theorem to an arbitrary
formally real ordered field.

Theorem 4.1 (Robertson). With the notation as above, let φ : V × V → Kc be a non-
negative definite Hermitian form on V . Then det(ajk) � det(bjk). If φ is positive definite then
det(ajk) > det(bjk). If det(ajk) = 0 then det(bjk) = 0.

Proof. Let v = ∑n
j=1 vj ej be any vector in V . Write Kc � vj = xj + iyj , xj , yj ∈ K. Then

φ(v, v) = ∑n
j,k=1 ajk(xjxk +yjyk)−2

∑n
j,k=1 bjkxjyk. Letting yj = 0, one quickly finds that

φ(v, v) � 0 ∀ v ∈ V ⇒
n∑

j,k=1

ajkxjxk � 0 ∀xj ∈ K.

Consequently,
∑n

j,k=1 ajkxjxk is a non-negative definite quadratic form and in particular
it follows that det(ajk) � 0.

The n×n matrix (bjk) is skew-symmetric. Hence if n is an odd number then det(bjk) = 0
and the theorem holds. Thus we assume that n is an even number n = 2m.

The proof is divided into two parts.

(1) det(ajk) > 0. Here we follow Robertson [7] (see also [16]).
The matrices (ajk) and (cjk) := i(bjk) are Hermitian. One can find a 2m × 2m matrix D

over K, with det(D) �= 0, such that the transformed matrix (a′
jk) := DT (ajk)D, where DT

denotes the transposed matrix of D, is a diagonal matrix with all its diagonal elements positive.
According to theorem 2.4 we can extend the ordered field (K, P ) to its closure (K′, P ′).
So without any loss of generality we assume from the very beginning that (K, P ) is real closed.
With this assumption and by theorem 2.3 the matrix D over K can be found such that the matrix
(a′

jk) is the unit matrix 1. It is obvious that the matrix (c′
jk) := DT (cjk)D is still Hermitian.

Therefore, there exists a 2m × 2m unitary matrix U over Kc (U †U = 1, U † := U
T
) such that
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the transformed matrix (c′′
jk) := (DU)†(cjk)(DU) is diagonal. Moreover, the transformed

matrix (a′′
jk) := U †(a′

jk)U = 1. Hence, finally we get

(c′′
jk) = (DU)†(cjk)(DU) = diag(λ1, . . . , λ2m) (a′′

jk) = (DU)†(ajk)(DU) = 1

(4.2)

where λ1, . . . , λ2m ∈ K are the solutions of the characteristic equation

det((c′
jk) − λ1) = 0. (4.3)

Since the matrix (c′
jk) is skew-symmetric then if λ is a solution of the characteristic

equation (4.3) then −λ is also a solution of this equation.
Therefore, the matrix (c′′

jk) is of the form

(c′′
jk) = diag(λ1,−λ1, . . . , λm,−λm) λ1, . . . , λm ∈ K. (4.4)

By equations (4.2) and (4.4) one quickly finds that the transformed matrix (φ′′
jk) of the

Hermitian form φ reads

(φ′′
jk) := (DU)†(φjk)(DU) = (a′′

jk) + (c′′
jk) = diag(1 + λ1, 1 − λ1, . . . , 1 + λm, 1 − λm).

(4.5)

Since φ is a non-negative definite Hermitian form then

1 ± λk � 0 k = 1, . . . ,m. (4.6)

From (4.2) and (4.4) one gets

det(ajk) = (detD)−2 det(cjk) = (detD)−2(−1)mλ2
1 · · ·λ2

m. (4.7)

But det(cjk) = det(ibjk) = i2m det(bjk) = (−1)mdet(bjk).
Substituting this relation into (4.7), employing also the fact that by (4.6) λ2

1 · · · λ2
m � 1

we obtain that the inequality det(ajk) � det(bjk) holds true.
Observe that if φ is a positive definite Hermitian form then det(φjk) > 0 ⇒ det(ajk) > 0.

Moreover, in (4.6) one has the strict inequalities 1 ± λk > 0 and consequently, we obtain the
strict inequality det(ajk) > det(bjk).

This completes the first part of the proof. Consider now the second part when:

(2) det(ajk) = 0. Then it follows that also det(φjk) = 0.
There exists an unitary matrix U over Kc such that

(φ′
jk) := U †(φjk)U = diag(φ1, . . . , φq, 0, . . . , 0) q < 2m φ1, . . . , φq > 0.

(4.8)

Define now

(φ′
jk(x)) := diag(φ1, . . . , φq, x, . . . , x) x � 0. (4.9)

It is evident that the Hermitian form φ(x) given by the matrix

(φjk(x)) = U(φ′
jk(x))U † x � 0 (4.10)

is positive definite for every x > 0. Moreover, (φjk(0)) = (φjk), i.e., φ(0) = φ.
We split (φjk(x)) as before

φjk(x) = ajk(x) + ibjk(x) x � 0 ajk(x), bjk(x) ∈ K

ajk(x) = akj (x) bjk(x) = −bkj (x) ajk(0) = ajk bjk(0) = bjk.
(4.11)

Since det(φjk(x)) > 0 ∀x > 0 then also det(ajk(x)) > 0 ∀x > 0 and by the first part (1)
of the proof one has

det(ajk(x)) > det(bjk(x)) ∀x > 0. (4.12)
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From (4.8), (4.9), (4.10), (4.11) and the fact that det(ajk) = 0 it follows that

det(ajk(x)) = det(ajk) +
r�2m∑
l=1

dlx
l =

r�2m∑
l=1

dlx
l

(4.13)

det(bjk(x)) = det(bjk) +
s�2m∑
l=1

flx
l dl, fl ∈ K

Consequently, by (4.12) and (4.13)

p�2m∑
l=1

glx
l − det(bjk) > 0 ∀ x > 0

(4.14)
p�2m∑
l=1

glx
l :=

r�2m∑
l=1

dlx
l −

s�2m∑
l=1

flx
l.

Since (bjk) is a skew-symmetric matrix over the formally real field K then det(bjk) � 0.
Hence, gl �= 0 for some l.

We will show that det(bjk) = 0.
Suppose that det(bjk) > 0. The inequality (4.14) yields(

p�2m∑
l=1

|gl|xl − det(bjk)

)
> 0 ∀x > 0 (4.15)

Without any loss of generality one can assume that all gl �= 0. Put then

x = min

(
det(bjk)

2p|g1| ,

√
det(bjk)

2p|g2| , . . . , p

√
det(bjk)

2p|gp|

)
. (4.16)

Remember that, as has been pointed out in the first part (1) of our proof, without any
loss of generality one can consider K to be a real closed field. So (4.16) is well defined by
theorem 2.3.

Substituting x given by (4.16) into (4.15) we infer that(
det(bjk)

2
− det(bjk)

)
> 0 ⇒ det(bjk) < 0 (4.17)

This contradicts the assumption: det(bjk) > 0. Consequently, det(bjk) = 0 and the proof
is complete. �

Remark. Note that using analytical methods a different proof of the second part (2) of
theorem 4.1 can be given. Namely, taking the limit of both sides of the inequality (4.14) when
x → 0+ one immediately gets

lim
x→0+

(
p�2m∑
l=1

glx
l − det(bjk)

)
� 0. (4.18)

As limx→0+

( ∑p�2m

l=1 glx
l
) = 0 and det(bjk) � 0 we obtain det(bjk) = 0.

From the proof of theorem 4.1 (especially see (4.5) and (4.7)) we find that for n = 2, i.e.
m = 1, the following corollary holds:

Corollary 4.1. If n = 2 then det(ajk) = det(bjk) iff det(φjk) = 0.
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One can prove a useful lemma which will be employed to generalize the Hadamard–
Robertson theorem.

Keeping the notation as above one has

Lemma 4.1. Let φ : V × V → Kc be a non-negative definite Hermitian form on V . Then
det(ajk) � det(φjk). Equality det(ajk) = det(φjk) holds iff det(ajk) = 0 or (φjk) = (ajk).

Proof. As before φjk = ajk + ibjk, where ajk = akj and bjk = −bkj are elements of K. We
put cjk := ibjk.

If det(ajk) = 0 then det(φjk) = 0 and the lemma is valid.
Let det(ajk) > 0. Suppose dimV = n. Analogously as in theorem 4.1 one can choose

an n × n matrix D over K such that (a′
jk) := DT (ajk)D = 1. Obviously the matrix

(c′
jk) := DT (cjk)D is Hermitian and skew-symmetric. Then a unitary n × n matrix can be

found for which

(c′′
jk) := U †(c′

jk)U = diag(λ1, . . . , λn) and (a′′
jk) := U †(a′

jk)U = 1

where λ1, . . . , λn ∈ K are the solutions of the characteristic equation (4.3). The n × n matrix
(c′

jk) is skew-symmetric and as before it follows that if λ is a solution of the characteristic
equation then −λ is also a solution.

Hence in the case of even n, n = 2m, we have (c′′
jk) = diag(λ1,−λ1, . . . , λm,−λm), and

in the case when n is odd, n = 2m + 1, the matrix (c′′
jk) = diag(λ1,−λ1, . . . , λm,−λm, 0).

Consequently, (φ′′
jk) = diag(1 + λ1, 1 − λ1, . . . , 1 + λm, 1 − λm) for n = 2m, and

(φ′′
jk) = diag(1 + λ1, 1 − λ1, . . . , 1 + λm, 1 − λm, 1) for n = 2m + 1.

Since φ is non-negative definite then 1 ± λk � 0 for all k. Therefore, det(φ′′
jk) =(

1 − λ1
2
) · · · (1 − λm

2
)

� 1. So det(φ′′
jk) � det(a′′

jk), and the equality det(φ′′
jk) = det(a′′

jk)

holds iff λ1 = · · · = λm = 0, i.e. iff (c′′
jk) = 0. This yields det(φjk) � det(ajk) and the

equality det(φjk) = det(ajk) holds iff (cjk) = 0. The proof is complete. �

To obtain a generalization of the Heisenberg uncertainty principle to any formally real
ordered field it is necessary to generalize first the Hadamard–Robertson theorem [7].

Theorem 4.2 (Hadamard–Robertson). Let φ : V × V → Kc be a non-negative definite
Hermitian form on a vector space V of dimension n over Kc. Then,

(i) φ11 . . . φnn � det(ajk) � det(φjk), φ11 . . . φnn � det(ajk) � det(bjk)

(ii) φ11 . . . φnn = det(ajk) = det(φjk) ⇔ φkk = 0 for some k, or (φjk) = (ajk) is diagonal.
(iii) φ11 . . . φnn = det(bjk) ⇔ φkk = 0 for some k or (ajk) is diagonal and det(bjk) = det(ajk).

Proof. (i) From theorem 4.1 and lemma 4.1 one has: det(ajk) � det(bjk) and det(ajk) �
det(φjk), respectively. Hence it remains only to prove that φ11 · · ·φnn � det(ajk). But as
φkk = akk for k = 1, . . . , n this inequality is equivalent to

a11 . . . ann � det(ajk). (4.19)

From the assumption that the Hermitian form φ : V × V → Kc is non-negative definite
it follows that the quadratic form

n∑
j,k=1

ajkxjxk xj ∈ K (4.20)

is also non-negative definite. Keeping this in mind we prove (4.19) by induction with respect
to the dimension of V . For dimV = 1 the inequality (4.19) holds trivially. Assume that (4.19)
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is valid for dimV = n − 1, n � 2. Let now dimV = n. We can find an n × n orthogonal
matrix R over K of the form

R =




r11 . . . r1,n−1 0
. . . . . .

rn−1,1 . . . rn−1,n−1 0
0 . . . 0 1


 RT R = 1 (4.21)

such that

(a′
jk) := RT (ajk)R =




λ1 0 . . . 0 a′
1n

0 λ2 . . . . 0 a′
2n

. . . . . . .

0 0 . . . λn−1 a′
n−1,n

a′
1n a′

2n . . . . a′
n−1,n a′

nn


 λ1, . . . , λn−1 � 0

a′
nn = ann. (4.22)

One quickly finds that

det(a′
jk) = det(ajk) = λ1 · · · λn−1ann − (a′

1n)
2λ2 · · · λn−1 − λ1(a

′
2n)

2λ3 · · · λn−1−
(4.23)

· · · − λ1λ2 · · · λn−2(a
′
n−1,n)

2 � det(An−1)ann

where An−1 is the (n − 1) × (n − 1) matrix over K defined by

An−1 :=




a11 . . . a1,n−1

a21 . . . a2,n−1

. . . . .

an−1,n . . . an−1,n−1


 detAn−1 = λ1 . . . λn−1.

Since the quadratic form (4.20) is non-negative definite, then the quadratic form∑n−1
j,k=1 ajkxjxk, xj ∈ K, is also non-negative definite. Consequently, the inductive assumption

gives

a11 . . . an−1,n−1 � det(An−1).

Substituting this into (4.23) one gets (4.19) and the proof of (i) is complete.
(ii) ⇐ If φkk = 0 for some k or (φjk) = (ajk) is diagonal then

φ11 · · ·φnn = det(ajk) = det(φjk). (4.24)

⇒ Assume that (4.24) holds. Hence, from lemma 4.1 we conclude that

det(φjk) = det(ajk) = 0 or (φjk) = (ajk).

Obviously, det(φjk) = 0 with (4.24) implies that φkk = 0 for some k. Suppose then that (4.24)
is valid and det(φjk) > 0. Now (ajk) = (φjk) and in (4.22) λ1, . . . , λn−1, ann > 0. So from
(4.23) it follows that the equality det(ajk) = det(An−1) · ann holds iff, a′

1n = · · · = a′
n−1,n = 0.

This last condition by (4.21) and (4.22), is equivalent to a1n = · · · = an−1,n = 0.
Analogous considerations for An−1 etc, lead to the conclusion that (4.24) with det(φjk) >

0 implies (ajk) = (φjk) = diag(φ11, . . . , φnn), φkk > 0 for k = 1, . . . , n.
(iii) The proof is straightforward keeping in mind that det(bjk) � 0 and employing (i)

and (ii). �

Finally, we would like to generalize to an arbitrary formally real ordered field (K, P ) an
interesting uncertainty relation for the trace of the matrix (φjk) (Trifonov [17]).
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Proposition 4.1. For any non-negative definite Hermitian form φ : V ×V → Kc, the following
inequality holds:

Tr(φjk) � 2

n − 1

n∑
j<k

|bjk| (4.25)

for every n, where n = dimV . If n is even, n = 2m, then also

Tr(φjk) � 2
m∑

j=1

|bj,m+j |. (4.26)

Proof. Assume j �= k. We start with the obvious relation

(ajj + akk)
2 � 4ajjakk.

From the Hadamard–Robertson theorem 4.2 we have

ajjakk � b2
jk.

Consequently,

ajj + akk � 2|bjk|
(4.27)

ajj + akk = 2|bjk| ⇔ ajk = 0 and ajj = akk = |bjk|.
Using the relation

Tr(φjk) = Tr(ajk) = 1

n − 1

n∑
j<k

(ajj + akk)

and (4.27) one gets that (4.25) holds true.
If n = 2m we can write

Tr(φjk) = Tr(ajk) =
m∑

j=1

(ajj + am+j,m+j ).

This with (4.27) gives (4.26) and the proposition is proved. �

5. Uncertainty relations in deformation quantization

Deformation quantization was introduced as an alternative approach to the description of
quantum systems. In the fundamental work by Bayen, Flato, Fronsdal, Lichnerowicz and
Sternheimer [19] it is suggested that quantization should be understood “. . . as a deformation
of the structure of the algebra of classical observables, rather than a radical change in the
nature of the observables”. This construction is realized by a deformation of the usual product
algebra of smooth functions on the phase space and then by a deformation of the Poisson
algebra.

To be more precise: let (M,ω) be a symplectic manifold (ω denotes the symplectic form
on M), and let C∞(M)((h̄)) be the vector space over C((h̄)) of the formal power series

f =
∞∑

k=−N

fk(x)h̄k (5.1)

where fk(x) are complex smooth functions on M,fk ∈ C∞(M).
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Definition 5.1 [19, 25, 39]. Deformation quantization on (M,ω) is an associative algebra
(C∞(M)((h̄)), ∗) over the field C((h̄)), where the associative product ∗, called the star
product, is given by

f ∗ g =
∞∑

k=0

Ck(f, g)h̄k f, g ∈ C∞(M)((h̄)) (5.2)

with Ck, k � 0, being bidifferential operators such that Ck(C
∞(M) × C∞(M)) ⊂

C∞(M) ∀k,Ck(1, f ) = Ck(f, 1) = 0 for k � 1, C0(f, g) = fg, C1(f, g) − C1(g, f ) =
i{f, g} and {·, ·} stands for the Poisson bracket.

It has been proved [39, 47, 48] that deformation quantization exists on each symplectic
manifold. Even more, recently Kontsevich [40] proved the existence of star product for an
arbitrary Poisson manifold. Perhaps the most transparent construction of star product on an
arbitrary symplectic manifold has been given by Fedosov [39] in terms of the geometry of
the formal Weyl algebra bundles. For our purpose it is not necessary to consider Fedosov’s
construction in more detail.

As has been pointed out in section 3 it seems natural to extend the associative algebra
(C∞(M)((h̄)), ∗) over the field C((h̄)) to (C∞(M)((h̄Q)), ∗) over the field C((h̄Q)). In what
follows we deal with such an extended deformation quantization.

To proceed further we need the definition of positive functionals and states in deformation
quantization. These concepts are fundamental in the GNS construction developed by
Bordemann et al [25, 26] and so seem basic to relate deformation quantization with quantum
mechanics.

Analogously as in the theory of C∗-algebras one has [25, 49]:

Definition 5.2. A C((h̄Q)) linear functional ρ: C∞(M)((h̄Q)) → C((h̄Q)) is said to be
positive if

ρ(f ∗ f ) � 0 ∀f ∈ C∞(M)((h̄Q)).

A positive linear functional ρ is called a state if ρ(1) = 1.

One can easily check that if a linear functional ρ is positive then

ρ(f ∗ g) = ρ(g ∗ f ) (5.3)

and the Cauchy–Schwarz inequality

ρ(f ∗ g)ρ(f ∗ g) � ρ(f ∗ f )ρ(g ∗ g) (5.4)

holds true. In particular, taking in (5.3) g = 1 we get

ρ(f ) = ρ(f ). (5.5)

Consequently, if f = f then ρ(f ) ∈ R((h̄Q)).
From (5.3) and (5.5) it follows that

ρ(f ∗ g − g ∗ f ) = 0.

This condition is satisfied for any positive functional iff

f ∗ g = g ∗ f ∀f, g ∈ C∞(M)((h̄Q)). (5.6)

Note that it is always possible to construct a star product which satisfies (5.6) [39, 50].
Another fundamental concept in the GNS construction and employed in the present paper

to describe intelligent states (section 6) is that of the Gel’fand ideal.
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Definition 5.3. Let ρ : C∞(M)((h̄Q)) → C((h̄Q)) be a positive linear functional. Then the
subspace Jρ of C∞(M)((h̄Q))

Jρ := {f ∈ C∞(M)((h̄Q)) : ρ(f ∗ f ) = 0}
is called the Gel’fand ideal of ρ.

It can be easily shown that by (5.3) and (5.4) Jρ is a left ideal of C∞(M)((h̄Q)), i.e. if
f ∈ Jρ then g ∗ f ∈ Jρ ∀g ∈ C∞(M)((h̄Q)) and

ρ(f ∗ g) = 0 = ρ(g ∗ f ) ∀g ∈ C∞(M)((h̄Q)). (5.7)

Let ρ : C∞(M)((h̄Q)) → C((h̄Q)) be a positive linear functional. Define the sesquilinear
form φ : C∞(M)((h̄Q)) × C∞(M)((h̄Q)) → C((h̄Q)) by

φ(f, g) := ρ(f ∗ g) f, g ∈ C∞(M)((h̄Q)). (5.8)

(For the definition of a sesquilinear form see the note after definition 4.1.)
From (5.3) one quickly finds that

φ(f, g) = φ(g, f ). (5.9)

It means that φ is a Hermitian form on C∞(M)((h̄Q)). Moreover, since φ(f, f ) =
ρ(f ∗f ) � 0 ∀f ∈ C∞(M)((h̄Q)) then φ defined by (5.8) is a non-negative definite Hermitian
form.

Now we are in a position to obtain uncertainty relations in deformation quantization. To
this end, let X1, . . . , Xn ∈ C∞(M)((h̄Q)) satisfy the reality conditions Xj = Xj , j = 1, . . . , n

(i.e. , Xj are observables) and let ρ : C∞(M)((h̄Q)) → C((h̄Q)) be a state. Define deviations
from the mean as follows:

δXj := Xj − ρ(Xj). (5.10)

Since Xj = Xj and ρ is a state then by (5.5) one gets

δXj = δXj . (5.11)

It is also evident that ρ(δXj ) = 0. Take

f :=
n∑

j=1

vj δXj vj ∈ C((h̄Q)).

Then from (5.8) and (5.11) we have

φ(f, f ) =ρ


 n∑

j=1

vj δXj ∗
n∑

k=1

vkδXk


 =

n∑
j,k=1

vj vkρ(δXj ∗ δXk) =
n∑

j,k=1

vj vkφ(δXj , δXk).

Define

φjk := ρ(δXj ∗ δXk) = φ(δXj , δXk) φjk ∈ C((h̄Q)). (5.12)

From (5.9) it follows that φjk = φkj . Since φ(f, f ) � 0 then
n∑

j,k=1

φjkvj vk � 0 ∀vj ∈ C((h̄Q)). (5.13)

Consequently, the n × n Hermitian matrix (φjk) over C((h̄Q)) determines a non-negative
Hermitian form (5.13).

We can now use the results of section 4.
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First, as before we write φjk = ajk + ibjk, ajk, bjk ∈ R((h̄Q)). From (5.12) and (5.10)
one gets

ajk = 1
2ρ(δXj ∗ δXk + δXk ∗ δXj ) = 1

2ρ(Xj ∗ Xk + Xk ∗ Xj) − ρ(Xj)ρ(Xk) = akj

(5.14)
bjk = − i

2
ρ(δXj ∗ δXk − δXk ∗ δXj) = h̄

2
ρ({Xj,Xk}∗) = −bkj

where {Xj,Xk}∗ := 1
ih̄ (Xj ∗Xk −Xk ∗Xj ). In analogy with quantum mechanics and statistics

the n × n symmetric matrix (ajk) over R((h̄Q)) can be called the dispersion or covariance
matrix. A diagonal element ajj = ρ(Xj ∗ Xj) − (ρ(Xj))

2 which we denote also by (	Xj )
2

is the variance of Xj , and 	Xj = √
ajj is the uncertainty in Xj (or standard deviation of

Xj ). The element ajk for j �= k is the covariance of Xj and Xk.
Having all that theorem 4.1 leads to the following Robertson–Schrödinger uncertainty

relation in deformation quantization:

det

(
1

2
ρ(δXj ∗ δXk + δXk ∗ δXj )

)
� det

(
h̄

2
ρ({Xj,Xk}∗)

)
. (5.15)

In particular for two observables X1 and X2 we get

	X1	X2 � 1
2

√
(h̄ρ({X1,X2}∗))2 + (ρ(X1 ∗ X2 + X2 ∗ X1) − 2ρ(X1)ρ(X2))2. (5.16)

This is the deformation quantization analogue of the well known in quantum mechanics
uncertainty relation given by Robertson [5] and Schrödinger [6]. Relation (5.16) has been
found recently by Curtright and Zachos [29]. However, their result seems to be derived in the
spirit of a strict deformation quantization which makes use of the Wigner function and not for
the formal deformation quantization in the sense of Bayen et al [19] considered in the present
paper.

Another uncertainty relation in deformation quantization which we call the Heisenberg–
Robertson uncertainty relation follows immediately from the Hadamard–Robertson theorem
(theorem 4.2), and it reads

(	X1)
2 · · · (	Xn)

2 � det

(
h̄

2
ρ({Xj ,Xk}∗)

)
. (5.17)

Finally, employing proposition 4.1 one gets the trace uncertainty relation

(	X1)
2 + · · · + (	Xn)

2 � h̄

n − 1

n∑
j<k

|ρ({Xj,Xk}∗)|. (5.18)

6. Intelligent states in deformation quantization

In quantum mechanics the states that minimize the Heisenberg–Robertson or the Robertson–
Schrödinger uncertainty relations play an important role in the theory of coherent and squeezed
states and they are called Heisenberg–Robertson or Robertson–Schrödinger intelligent states,
(minimum uncertainty states, correlated coherent states) [8–13, 16]. It seems reasonable to
extend these notions to deformation quantization. Thus we have

Definition 6.1. A state ρ : C∞(M)((h̄Q)) → C((h̄Q)) is said to be a Heisenberg–Robertson
intelligent state for X1, . . . , Xn if

(	X1)
2 · · · (	Xn)

2 = det

(
h̄

2
ρ({Xj ,Xk}∗)

)
. (6.1)
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If

det

(
1

2
ρ(δXj ∗ δXk + δXk ∗ δXj )

)
= det

(
h̄

2
ρ({Xj,Xk}∗)

)
(6.2)

then ρ is called a Robertson–Schrödinger intelligent state for X1, . . . , Xn.

From theorems 4.1 and 4.2 one can easily obtain that

(6.1) ⇒ (6.2).

Hence every Heisenberg–Robertson intelligent state is also a Robertson–Schrödinger
intelligent state.

To have a deeper insight into the Robertson–Schrödinger intelligent states we prove some
conditions under which (6.2) is satisfied.

Our results are the deformation quantization versions of the propositions found by Trifonov
in the case of quantum mechanics (propositions: 1 and 3 of [12]).

Observe that by theorem 4.1 if det
(

1
2ρ(δXj ∗ δXk + δXk ∗ δXj )

) = 0 then also
det

(
h̄
2ρ({Xj ,Xk}∗)

) = 0. Hence, det
(

1
2ρ(δXj ∗ δXk + δXk ∗ δXj )

) = 0 is a sufficient
condition for ρ to be a Robertson–Schrödinger intelligent state for X1, . . . , Xn. In the case
when the number n of observables Xj is odd this condition is also necessary.

We can prove

Proposition 6.1. Let ρ : C∞(M)((h̄Q)) → C((h̄Q)) be a state and ajk := 1
2ρ(δXj ∗ δXk +

δXk ∗ δXj ), j, k = 1, . . . , n. Then det(ajk) = 0 iff there exist x1, . . . , xn ∈ R((h̄Q)) such that∑n
j=1 |xj | > 0 and

ρ


 n∑

j=1

xjδXj ∗
n∑

k=1

xkδXk


 = 0 (6.3)

i.e.,
∑n

j=1 xjδXj is an element of the Gel’fand ideal Jρ of ρ.

Proof (Compare with [12]). Assume that det(ajk) = 0. Then there exists an n× n orthogonal
matrix R = (rjk) over R((h̄Q)), RT R = 1, such that

RT (ajk)R = RT
(

1
2ρ(δXj ∗ δXk + δXk ∗ δXj)

)
R

= diag(λ1, . . . , λq−1, 0 . . . , 0) 2 � q � n.

Hence

ρ


 n∑

j=1

rjqδXj ∗
n∑

k=1

rkqδXk


 = 0.

Denoting xj := rjq ∈ R((h̄Q)) one gets (6.3). This completes the first part of the proof.
Assume now that there exist x1, . . . , xn ∈ R((h̄Q)) such that

∑n
j=1 |xj | > 0 and (6.3)

holds. Choose an n × n matrix D = (djk) over R((h̄Q)) such that dj1 = xj , j = 1, . . . , n,
and det D �= 0.

Consider the transformed matrix (a′
jk) = DT (ajk)D.

We have

a′
1l = 1

2
ρ


 n∑

j=1

xjδXj ∗
n∑

k=1

dklδXk +
n∑

k=1

dklδXk ∗
n∑

j=1

xjδXj


 l = 1, . . . , n.
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Since
∑n

j=1 xjδXj ∈ Jρ then by (5.7)

ρ


 n∑

j=1

xjδXj ∗ g


 = 0 = ρ


g ∗

n∑
j=1

xjδXj


 ∀g ∈ C∞(M)((h̄Q)).

Therefore, a′
1l = 0 for l = 1, . . . , n and consequently, det(a′

jk) = 0. But det(a′
jk) =

(detD)2det(ajk) with detD �= 0. This yields det(ajk) = 0. The proof is complete. �

To find another sufficient condition that a given state ρ be a Robertson–Schrödinger
intelligent state for X1, . . . , Xn we deal with the case when n is an even number, n = 2m.
Thus we have X1, . . . , X2m ∈ C∞(M)((h̄Q)) such that Xj = Xj , j = 1, . . . , 2m. Let δXj be
deviations from the mean as in (5.10). Introduce the following objects:

δAα := 1
2 (δXα + iδXα+m)

δAα = 1
2 (δXα − iδXα+m) α = 1, . . . ,m.

(6.4)

With all that one has

Proposition 6.2. If there exists a linear transformation

δA′
α =

m∑
β=1

(uαβδAβ + vαβδAβ)

δA′
α =

m∑
β=1

(vαβδAβ + uαβδAβ) uαβ, vαβ ∈ C((h̄Q)) α, β = 1, . . . ,m

(6.5)

such that

det

(
(uαβ) (vαβ)

(vαβ) (uαβ)

)
�= 0 (6.6)

and

ρ(δA′
α ∗ δA′

α) = 0 α = 1, . . . ,m (6.7)

(δA′
α belongs to the Gel’fand idealJρ), then (6.2) is satisfied, i.e. ρ is a Robertson–Schrödinger

intelligent state for X1, . . . , X2m.

Proof (Compare with [12]). Following (6.4) define

δX′
α := (δA′

α + δA′
α)

δX′
α+m := −i(δA′

α − δA′
α) α = 1, . . . ,m.

Obviously δX′
j = δX′

j , j = 1, . . . , 2m and one can easily check that

δX′
j =

2m∑
k=1

djkδXk (6.8)

where under (6.4), (6.5) and (6.6) the 2m × 2m matrix (djk) over R((h̄Q)) is non-singular,
det(djk) �= 0. Straightforward calculations under the assumption (6.7) lead to the relation

det

(
1

2
ρ(δX′

j ∗ δX′
k + δX′

k ∗ δX′
j )

)
= det

(
h̄

2
ρ({X′

j , X
′
k}∗)

)
.

Consequently, by (6.8) equation (6.2) holds true. �
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Employing corollary 4.1 for the case of two observables one can easily prove the next
proposition.

Proposition 6.3. A state ρ is a Robertson–Schrödinger intelligent state for X1,X2 iff there
exist u1, u2 ∈ C((h̄Q)) such that u1δX1 + u2δX2 ∈ Jρ .

Robertson–Schrödinger intelligent states for two observables in terms of Moyal star
product and Wigner functions have been considered in [24, 29].

7. Concluding remarks

In this paper we have obtained uncertainty relations in deformation quantization formalism.
To achieve this, first it was necessary to study a general theory of formal real ordered fields and
to apply it to the case of formal power series. Having done all that we were able to generalize
the Robertson and Hadamard–Robertson theorems to be valid for an arbitrary ordered field.
This allowed us to formulate several uncertainty relations and to introduce the concept of
intelligent states in deformation quantization. Of course further investigations in this direction
are needed. In particular, one should consider some concrete set of observables and get
examples of the corresponding intelligent states.

It is expected that the results of the present paper will give a better understanding of the
relations between quantum mechanics and deformation quantization.
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